SCD Series "All-in-One" Compact Dryer

Date: Dec. 2018

Version: Ver.F (English)

Contents

1.	Ger	neral Description	7
	1.1	Coding Principle	8
	1.2	Features	8
	1.3	Technical Specifications	. 10
		1.3.1 Drying Capacity	. 13
	1.4	Safety Regulations	. 15
		1.4.1 Safety Regulations for the Blowers	. 15
		1.4.2 Safety Signs and Labels	. 16
		1.4.3 Transportation and Storage of the Machine	. 16
	1.5	Exemption Clause	. 18
2.	Stru	ucture Characteristics and Working Principle	. 19
	2.1	Working Principle	. 19
	2.2	Relative Humidity and Dew-point	. 20
	2.3	Why Choose "All-in-One" Compact Dryer	. 20
	2.4	Options	. 21
3.	Inst	allation Testing	. 23
	3.1	Machine Location	. 23
	3.2	Air Pipe and Material Pipe Connection	. 24
	3.3	Cooling Water Connection	. 25
		3.3.1 Cooling Water Connection	. 25
		3.3.2 Condensation Drainage Pipe	. 26
	3.4	Power Connection	. 26
	3.5	Compressed Air Supply	. 27
		Option Installation	
		3.6.1 Installation Steps of Cyclone Dust Collector	. 27
		3.6.2 Installation Steps of Oil Filter	
		3.6.3 Material storage bin (MST-80U-OP)	
4.	App	olication and Operation	. 30
	4.1	Operation Procedure for HMI	. 30
		4.1.1 Description of touch screen	. 30
		4.1.2 Touch panel appear error	. 30
		4.1.3 Screen operation flow Table	
		4.1.4 Menu Particular	. 31
		3/53)	

		4	1.4.1	System Default Screen	. 31
		4	1.4.2	Dehumidifying Process	. 32
		4	1.4.3	Password Unlock	. 32
		4	1.4.4	Working Modes of Regeneration Heater (Dehumidifying	
		F	unction)34	
		4	1.4.5	Working Modes of Material Drying	. 37
		4	1.4.1	Conveying Monitoring	.40
		4	1.4.2	Alarms Fault Records	.40
5.	Tro	uble-s	hooting	J	. 43
6.	Mai	ntena	nce and	l Repair	. 44
	6.1	Filter	& Press	sure Regulating Valve	.45
		6.1.1	Filter &	Pressure Regulating Valve Drawing	. 45
		6.1.2	Filter &	Pressure Regulating Valve Operation steps	. 45
	6.2	Air Fi	Iters		. 45
	6.3	Blowe	er Motor	'S	.46
		6.3.1	Drying	Blower	.46
		6.3.2	Regen	eration Blower	.46
		6.3.3	Convey	ring Blower	.46
		6.3.4	Blower	Cleaning	. 47
	6.4	The S	Service I	_ife of the Key Parts of the Product	.47
	6.5	Hone	ycomb-	rotor	.48
		6.5.1	What is	S Honeycomb-rotor	.48
		6.5.2	Installa	tion Steps of the Rotor	. 48
	6.6	EGO			. 50
	6.7	Coole	er		. 50
	6.8			Schedule	
				al Machine Information	
				tion & Inspection	
				hecking	
				Checking	
				y Checking	
				arly Checking	
		6.8.7	Yearly	Checking	. 53
		6.8.8	3 year	Checking	. 53

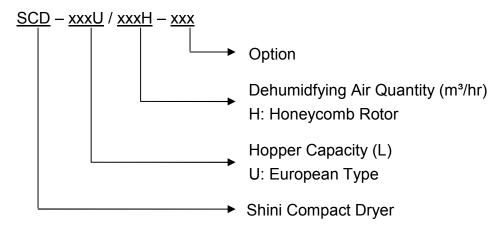
Table Index

Table 1-1: Specifications 1(Hermetic Design)	. 10
Table 1-2: Specifications 2 (Hermetic Design)	. 11
Table 1-3: Specifications (Semi-open Design)	. 12
Table 1-4: Drying Capacity 1	. 13
Table 1-5: Drying Capacity 2	. 14
Table 3-1: Cooling water connection table	. 25
Table 3-2: Cooling Water Specifications	. 26
Table 3-3: Compressed Air Specification	. 27
Table 4-1: Touch Panel Information	. 30
Table 4-2: Alarm Information List	. 42
Table 6-1: Filter & Pressure Regulating Valve Assembly	. 45
Table 6-2: The Service Life of the Key Parts of the Product	. 47
Picture Index	
Picture 1-1: Technical Specifications	. 10
Picture 1-2: Blower	
Picture 2-1: SCD Working Principle	. 19
Picture 2-2: SCD-OP Working Principle (With plate Heat Exchanger) (Option)	19
Picture 3-1: Installation Drawing	. 23
Picture 3-2: Schematic Drawing of Installation (Hermetic Design)	. 24
Picture 3-3: Schematic Drawing of Installation (Semi-integral Design)	. 24
Picture 3-4: Cooling Water Connection	. 25
Picture 3-5: Installation Diagram of Cyclone Dust Collector	. 28
Picture 3-6: Installation Diagram of Oil Filter	. 28
Picture 3-7: Material Stage Bin of Optical Grade MST-80U-OP	. 29
Picture 4-1: Description of Touch Screen	. 30
Picture 4-2: Screen Operation Flow Table	. 31
Picture 4-3: System Initial Screen	. 31
Picture 4-4: Dehumidifying Process Screen	. 32
Picture 4-5: Password Input Screen	. 32

Picture 4-6: Drying Process	. 33
Picture 4-7: Parameter Setting Menu Screen	. 33
Picture 4-8: Time Setting Screen	. 33
Picture 4-9: Parameter Setting	. 34
Picture 4-10: Parameter Setting Screen	. 35
Picture 4-11: Drying Process Screen	. 35
Picture 4-12: Dehumidify Process Screen	. 35
Picture 4-13: Parameter Setting Screen	. 36
Picture 4-14: Drying Process Screen	. 36
Picture 4-15: Dehumidify Process Screen	. 37
Picture 4-16: Drying Process Screen	. 37
Picture 4-17: Drying Process Screen	. 38
Picture 4-18: Recipe Setting Screen	. 38
Picture 4-19: Drying Process Screen	. 39
Picture 4-20: Drying Process Screen	. 39
Picture 4-21: Conveying Monitoring Screen	. 40
Picture 4-22: Conveying Setting Screen	. 40
Picture 4-23: Alarm Fault Records	. 41
Picture 6-1: Filter & Pressure Regulating Valve Drawing	. 45
Picture 6-2: Filter Clearning	. 46
Picture 6-3: Installation of Blowers	. 46
Picture 6-4: Conveying Blower	. 47
Picture 6-5: Blower	. 47
Picture 6-6: Honeycomb Rotor	. 48
Picture 6-7: Rotor Installation Diagram	. 49
Picture 6-8: EGO	. 50

1. General Description

Read this manual carefully before operation to prevent machine damage or personal injuries.


SCD Compact Dryer has three functions of dehumidification, drying and two-stage conveying, which is especially suitable for processing engineering plastics materials with high hygroscopicity, such as PA, PC, PBT, PET. The optical SCD-OP can be used for lens, LCD backlight board and discs productions that reaches the dew-point below -40°C under ideal condiction.

SCD-ES

1.1 Coding Principle

1.2 Features

- Combine the function of dehumidifying, drying and two-stage conveying into a single unit.
- SCD Dryer Loaders are equipped with honeycomb rotor to obtain stable low dew-point drying air, which have two models: semi-open and hermetic.
- Feeding system is equipped with shut-off valve to ensure no residuals in hopper tubes.
- Microprocessor is standard equipped for the control.
- Heat-preserved drying hopper adopts down-blow pipe design that collocates with cyclone air exhaust to avoid heat lost and improve drying efficiency.

All machine service should be performed by professional technicians. This manual is applicable to the operator and maintenance personnel on the field. The service instruction of Chapter 6 is intended for service engineers, and other chapters are for the operator.

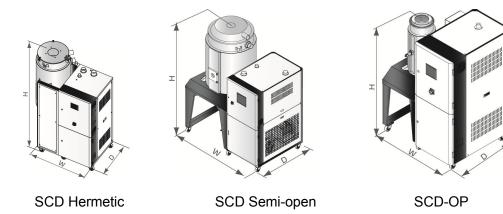
Any modifications of the machine must be approved by SHINI in order to avoid personal injury and machine damage. We shall not be liable for any damage caused by unauthorized change of the machine.

Our company provides excellent after-sales service. If there's any problem during the application, please contact the company or local vendor.

Headquarter and Taipei factory:

Tel: (886) 2 2680 9119

Shini Plastics Technologies (Dongguan), Inc:


Tel: (86) 769 8111 6600

Shini Plastics Technologies India Pvt.Ltd.:

Tel: (91) 250 3021 166

1.3 Technical Specifications

Picture 1-1: Technical Specifications

Table 1-1: Specifications 1(Hermetic Design)

Model SCD-	20U/30H-OP	40U/30H-OP	80U/50H-OP	120U/80H-OP	
Version	D	D	D	D	
Drying System					
Drying Heater Power (kW)	3	3	3.9	6	
Drying Blower Power (kW)	0.4	0.4	0.4	0.75	
Hopper Capacity (L)	20	40	80	120	
Dehumidifying System					
Regenerating Heater Power (kW)	3	3	3	3	
Regenerating Blower Power (kW)	0.4	0.4	0.4	0.4	
Dehumidifying Air quantity (m ³ /hr)	30	30	50	80	
Feeding System	•	·	·	•	
Feeding Blower Power (kW)	1.5	1.5	1.5	1.5	
Dia. of Material Pipe (inch)	1.5	1.5	1.5	1.5	
SHR-U-E Hopper (L)	3*	3*	3*	3*	
SHR-U Hopper (L)	3	3	6	6	
Dimensions					
H(mm)	1400	1500	1670	1710	
W(mm)	1050	1050	1240	1240	
D(mm) 900 S		900	1000	1000	
Weight (kg)	235	280	330	385	

Note: 1) Plastic materials can be completely dried by drying air with dew-point temperature \leq -20 °C. When the ambient temperature \leq -25 °C, and relative humidity \leq -60%, the drying air dew-point temp. \leq -40 °C.

We reserve the right to change specifications without prior notice.

^{2) &}quot;*" stands for hopper receiver SHR-CP-U.

³⁾ Power supply: 3Φ, 230 / 400 / 460 / 575VAC, 50 / 60Hz.

Table 1-2: Specifications 2 (Hermetic Design)

Model SCD-	40U /40H	80U /40H	120U /80H	160U /80H	160U /120H	230U /120H	300U /200H	450U /200H
Version	D	D	E	Е	Е	D	D	D
Drying System								
Drying Heater Power (kW)	4	4	4	4	6	6	12	12
Drying Blower Power (kW)	0.12	0.12	0.75	0.75	0.75	0.75	1.5	1.5
Hopper Capacity (L)	40	80	120	160	160	230	300	450
Dehumidifying System	1							
Regenerating Heater Power (kW)	3	3	3	3	4	4	4	4
Regenerating Blower Power (kW)	0.12	0.12	0.4	0.4	0.4	0.4	0.4	0.4
Dehumidifying Air quantity (m³/hr)	40	40	80	80	120	120	200	200
Feeding System								
Feeding Blower Power (kW)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Dia. of Material Pipe (inch)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
SHR-U-E Hopper (L)	3	6	6	6	6	12	12	12
SHR-U Hopper (L)	3	6	6	6	6	12	12	12
Dimensions								
H(mm)	1672	1751	1957	2102	2102	2012	2160	2350
W(mm)	1051	1066	1125	1125	1125	1223	1460	1460
D(mm)	734	734	734	734	734	134	1020	1020
Weight (kg)	295	325	340	350	390	420	565	595

Note: 1) Plastic materials can be completely dried by drying air with dew-point temperature ≤-20°C. When the ambient temperature ≤-25°C, and relative humidity ≤-60%, the drying air dew-point temp. ≤-40°C.

We reserve the right to change specifications without prior notice.

^{2) &}quot;*" stands for hopper receiver SHR-CP-U.

³⁾ Power supply: 3Φ, 230 / 400 / 460 / 575VAC, 50 / 60Hz.

Table 1-3: Specifications (Semi-open Design)

Model SCD-	600U/400H	750U/400H	900U/700H	1200U/700H	
Version	С	С	F	F	
Drying System					
Drying Heater Power (kW)	18	18	24	24	
Drying Blower Power (kW, 50/60Hz)	3.75 / 4.5	3.75 / 4.5	7.5 /8.6	7.5 /8.6	
Hopper Capacity (L)	600	750	900	1200	
Dehumidifying System					
Regenerating Heater Power (kW)	7.2	7.2	10	10	
Regenerating Blower Power (kW, 50/60Hz)	0.75 / 0.9	0.75 / 0.9	1.5 / 1.8	1.5 / 1.8	
Dehumidifying Air quantity (m³/hr, 50/60Hz)	400 / 450	400 / 450	700 / 780	700 / 780	
Feeding System					
Feeding Blower Power (kW)	1.5	1.5	3.75	3.75	
Dia. of Material Pipe (inch)	1.5	1.5	2	2	
SHR-U-E Hopper Receiver (L)	12	12	24	24	
SHR-U Hopper Receiver (L)	12	12	24	24	
Dimensions					
H(mm)	(mm) 2380		2640	3070	
W(mm)	1745	1745	2140	2140	
D(mm)	1255		1380	1380	
Weight (kg)	Veight (kg) 640		850	900	

Note: 1) Plastic materials can be completely dried by drying air with dew-point temp. \leq -20 °C. When ambient temperature \leq -25 °C, and relative humidity \leq -60%, the drying air dew-point temp. \leq -40 °C.

We reserve the right to change specifications without prior notice.

^{2) &}quot;*" stands for hopper receiver SHR-CP-U.

³⁾ Power supply: 3Φ, 230 / 400 / 460 / 575VAC, 50 / 60Hz.

1.3.1 Drying Capacity

Table 1-4: Drying Capacity 1

Drying Drying			Drying Capacity (kg/hr)								
Material	Temp. (℃)	Time (hr)	40U /40H	80U /40H	120U /80H	160U /80H	160U /120H	230U /120H	300U /200H	450U /200H	
ABS	80	2-3	1	6	2	27		35	10)5	
CA	75	2-3	1	2	2	22		30	9	0	
CAB	75	2-3	1	2	2	22		30	9	0	
CP	75	2-3	1	6	2	?7		35	10	06	
LCP	150	4	1	1	2	20		27	8	0	
POM	100	2	2	4	4	10		53	16	30	
PMMA	80	3	1	7	2	.9		38	1	15	
IONOMER	90	3-4	1	0	1	7		22	6	6	
PA6/6.6/6.1 0	75	4-6		9	1	4		19	58		
PA11	75	4-5	1	0	1	7		23	69		
PA12	75	4-5	1	0	1	7	23		69		
PC	120	2-3	1	9	3	31 41		41	124		
PU	90	2-3	1	7	2	29	38		115		
PBT	130	3-4	1	3	2	23	31		93		
PE	90	1	4	7	80		106		318		
PEI	150	3-4	1	1	20			27		0	
PET	160	4-6	1	1	19		25		75		
PETG	70	3-4	1	1	20		27		80		
PEN	170	5	1	3	2	23		30		90	
PES	150	4	1	3	2	23	30		9	0	
PMMA	80	3	1	7	2	29 28		28	115		
PPO	110	1-2	1	9	3	33		44		133	
PPS	150	3-4	1	1	2	20		27	8	0	
PI	120	2	2	4	4	10		53	16	30	
PP	90	1	39		66			88		65	
PS(GP)	80	1	39		66			88		265	
PSU	120	3-4	12		22		29		85		
PVC	70	1-2	19		33		44		135		
SAN(AS)	80	1-2	1	9	33		44		135		
TPE	110	3	1	8	3	30		40		125	

Note: 1) Please refer to above drying capacity of the SCD, and select right model based on material dosage and drying capacity.

2) Please consult Shini service staff for model selection.

Table 1-5: Drying Capacity 2

	Drying	Drying	Drying Capacity (kg/hr)					
Material	Temp. (℃)	Time(hr)	600U /400H	750U /400H	900U /700H	1200U /700H		
ABS	80	2-3	210	L	355			
CA	75	2-3	180		295			
CAB	75	2-3	180		295			
СР	75	2-3	210		355			
LCP	150	4	160		365			
POM	100	2	320		530			
PMMA	80	3	230		383			
IONOMER	90	3-4	133		220			
PA6/6.6/6.10	75	4-6	115		192			
PA11	75	4-5	138		230			
PA12	75	4-5	138		230			
PC	120	2-3	250		413			
PU	90	2-3	230		383			
PBT	130	3-4	186		310			
PE	90	1	637		1062			
PEI	150	3-4	160		265			
PET	160	4-6	150		250			
PETG	70	3-4	160		265			
PEN	170	5	180		300			
PES	150	4	180		300			
PMMA	80	3	230		385			
PPO	110	1-2	265		440			
PPS	150	3-4	160		265			
PI	120	2	320		530			
PP	90	1	530		885			
PS(GP)	80	1	531		885			
PSU	120	3-4	173		290			
PVC	70	1-2	265		442			
SAN(AS)	80	1-2	265		442			
TPE	110	3	250		413			

Note: 1) Please refer to above drying capacity and material dosage to select the right model of the SCD.

²⁾ Please consult Shini service staff for model selection.

1.4 Safety Regulations

1.4.1 Safety Regulations for the Blowers

- 1) Under normal operation, the blowers will generate high temperature. Do not touch blower's case to avoid any physical injury.
- 2) Under normal operation, the current loading of blower motor will increase or reduce according to air pressure's change accordingly. During the wiring, adequate motor overload protection switch should be installed with full loading test, to ensure operating safely under full-loading and avoid motor damage.
- 3) As to avoid any block materials, dust, powder, fiber particles and water drops entering the blower that cause the deficiency of its performance. This machine is designed with air filter, clean up the foreign particles in the filter (recommended to clean up this filter weekly).
- 4) Clean the internal and external parts (especially for the fan cooling path) of the blower, and remove the dust on surface if necessary. If more dusts are accumulated, it will cause ventilation deficiency, temperature rising, vacuum power reduce, vibration increase that cause machine broke down.
- 5) Ball bearing, oil seal and soundproof are the consumable parts that have life period and equire regular replacement. Meanwhile, blade, external case, and metallic screen should be replaced regularly for best performance.
- 6) Under normal operation, if the blowers are not running smoothly or abnormal noise appeared. Please immediately shut down the machine for repair.

Picture 1-2: Blower

1.4.2 Safety Signs and Labels

Danger!

High voltage danger!

This label is stuck on the electrical boxes.

Attention!

This label means that this area should be taken care!

Warning!

High temperature, take care of hands!

This label should be stick to the shell of heater.

Attention!

No need for regular inspection because all the electrical parts in the control unit are fixed tightly!

Note!

The EGO over-temperature protection is only for process heater protection, not for material protection usage, and the default setting should not be changed.

1.4.3 Transportation and Storage of the Machine

Transportation

- SCD series "All-in-one" compact dryer are packed in crates or plywood cases with wooden pallet at the bottom, suitable for quick positioning by fork lift.
- After unpacked, castors equipped on the machine can be used for ease of movement.
- 3) Don't rotate the machine and avoid collision with other objects during transportation to prevent improper functioning.
- 4) The structure of the machine is well-balanced, although it should also be handled with care when lifting the machine for fear of falling down.

5) The machine and its attached parts can be kept at a temperature from $-25\,^{\circ}$ C to $+55\,^{\circ}$ C for long distance transportation and for a short distance, it can be transported with temperature under $+70\,^{\circ}$ C.

Storage:

- 1) SCD series "All-in-One" compact dryer should be stored indoors with temperature kept from 5℃ to 40℃ and humidity below 80%.
- 2) Disconnect all power supply and turn off main switch and control switch.
- Keep the whole machine, especially the electrical components away from water to avoid potential troubles caused by the water.
- 4) Plastic film should be used to protect the machine from dust and rains.

Working environment:

 Indoor, in dry environment with max. temperature +45℃ and humidity no more than 80%.

Do not use the machine:

- 1) If it is with a damaged cord.
- 2) On a wet floor or when it is exposed to rain to avoid electrical shock.
- 3) If it has been dropped or damaged until it is checked or fixed by a qualified serviceman.
- 4) This equipment works normally in the environment with altitude within 3000m.
- 5) At least a clearance of 1m surrounding the equipment is required during operation. Keep this equipment away from flammable sources at least two meters.
- 6) Avoid vibration, magnetic disturbance at the operation area.

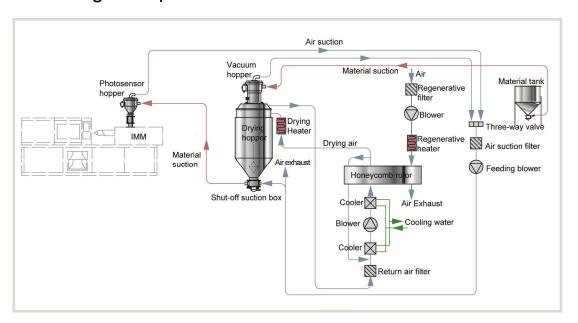
Rejected parts disposal

When the equipment has run out its life time and can not be used any more, unplug the power supply and dispose of it properly according to local code. Fire hazard.

In case of fire, CO₂ dry powder fire extinguisher should be applied.

1.5 Exemption Clause

The following statements clarify the responsibilities and regulations born by any buyer or user who purchases products and accessories from Shini (including employees and agents).


Shini is exempted from liability for any costs, fees, claims and losses caused by reasons below:

- 1) Any careless or man-made installations, operation and maintenances upon machines without referring to the Manual prior to machine using.
- 2) Any incidents beyond human reasonable controls, which include man-made vicious or deliberate damages or abnormal power, and machine faults caused by irresistible natural disasters including fire, flood, storm and earthquake.
- Any operational actions that are not authorized by Shini upon machine, including adding or replacing accessories, dismantling, delivering or repairing.
- 4) Employing consumables or oil media that are not appointed by Shini.

2. Structure Characteristics and Working Principle

2.1 Working Principle

Picture 2-1: SCD Working Principle

Picture 2-2: SCD-OP Working Principle (With plate Heat Exchanger) (Option)

Dehumidifying: damp and hot air from dry material barrel is blown into rotor after cooled. Moisture from the air is absorbed by rotor and is then adsorbed by

regeneration heating air. Two strands of airflow function on the rotor. And with the rotation, moisture from the air is absorbed and expelled after absorbed regeneration air to form stable low dew-point air, which is dried to the drying temperature and then is blown into material barrel to closed circle to dry material.

Suction: material is absorbed into barrel from storage barrel or other storage containers. When the magnetic reed switch detects no material, suction motor runs to produce vacuum inside vacuum hopper. Raw material in storage barrels is absorbed into suction hopper due to air pressure difference. When the time is completed, suction motor stops. Raw materials drop into drying hopper barrel due to gravity. The dried raw material after drying is taken out to the hopper by photosensor installed on molding machine or other hopper form drying hopper barrel.

2.2 Relative Humidity and Dew-point

Relative humidity: Relative air humidity means real vapor content to saturated vapor at the same temperature in percentage. Dew point: it means that temperature when the saturation vapor begins to dew. When the relative humidity is 100%, the ambient temperature is the dew point temperature. The lower of dew point temperature (than the ambient temperature) is, the less possible to dew, that also means the more drier the air is. The dew point will not be influenced by temperature, but influenced by pressure.

2.3 Why Choose "All-in-One" Compact Dryer

For these quality deficiencies as bubble, crazing, cracking, poor transparency are due to insufficient drying of plastic materials before molding, and the engineering plastics such as: PC, PA, PBT, PET, Nylon, etc. The hygroscopic materials used in the plastics industry such as PC, PA, PBT, PET, Nylon, etc. cannot be dried effectively by conventional hot air drying systems because the moisture enters inside the particles. According to suggestion of the manufacturer, the plastic materials can be completely dried by drying air with dew-point temperature \leq -20 °C . However, the SCD sufficiently dehumidifies and dries the air inside the closed-loop system, and the dry air eliminates the moisture fast and completely as to reach the drying and dehumidifying effect.

2.4 Options

Optical Powder-removing Hopper

SCD-OP High-efficiency Filter

 Optical SCD-OP series equipped with powder-removing hopper which can avoid powders in production; material contact surfaces are stainless-steel polished that collocate conveying system with closed loop to avoid contamination and moisture regain; system has standard configuration of high-efficiency filter, which can filter tiny ion of 0.3µm with filter ratio of 99.995%. (Only Apply to SCD-20U/30H~SCD-120U/80H)

High-efficiency Filter HEPA (0.3µm)

Optical Material Tank (5µm)

- Available to option with human-machine interface (LCD control with HMI), and add "LC" at the end of the model code.
- Built-in type, which meas that dew-point monitor is installed on the machine, is convenient to monitor dew-point temperature. Add "D" at the end of the model code.
- Portable type, which meas that dew-point monitor is separate from the machine, is convenient to test dew-point temperature of different machines.
 Add "PD" at the end of the model code.

- Optical-class models can select high-efficient filter (left) and optical-class storage hopper (right) to avoid material contamination in the conveying process.
- Built-in type, which meas that dew-point monitor is installed on the machine, is convenient to monitor dew-point temperature. Add "D" at the end of the model code.

Dew-point Monitor (portable)

- For models with energy-saving drying management, add "ES" at model behind, and standard equipped with HMI touch control, which can save up to 41% of total power consumption. Volume used per hour is settable between 40~100% as drying capacity to save the totally power consumption of 35%~0; Standard equipped with heat regenerative recycler which recycles the regeneration air exhausted heat via plate heat exchanger and can save 3%~6% of total power consumption.
- For models optional with drying heat recycler, add "HE" at model behind. Dehumidified low temperature air via plate heat exchanger to recycle the heat of hot-wet return air, which can higher the air temperature in drying heater and lower the power consumption of the heater, the total power consumption can save 0%~19%.
- Three-stage conveying function is available to feed two sets of injection molding machines. Add "M2" at the end of the model code.
- Three-stage conveying function is available to feed two sets of injection molding machines. Add "M2" at the end of the model code.
- Polished surface inside of hopper, Plus "P" at the end of the model code.

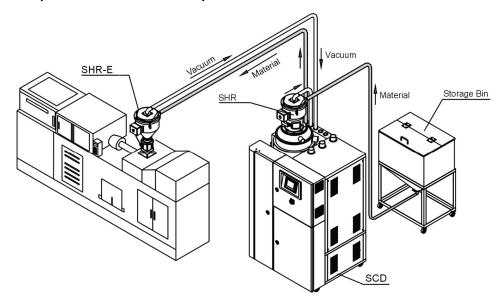
3. Installation Testing

This series of models only could be applied in working environment with good ventilation.

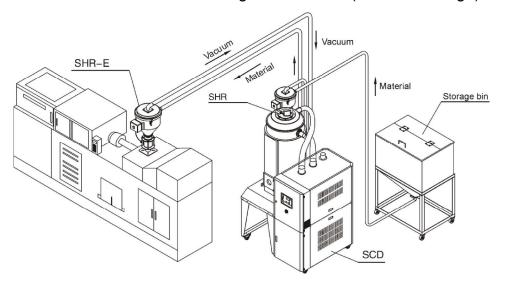
3.1 Machine Location

Picture 3-1: Installation Drawing

Installation Notice:

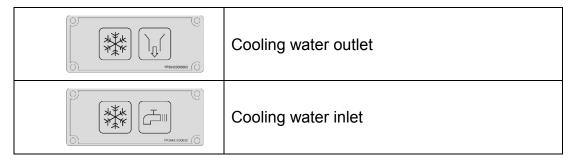

- The machine can only be installed in vertical position, make sure there's
 no pipeline, fixed structure and other object that may obstruct machine
 installation or cause item damage, human injuries above the selected
 location and adjacent areas.
- 2) For easy maintenance, leaving 1m space around machine is suggested.

Important: Keep machine 2m away from the inflammable materials.


3) The machine must be placed on the ground level to ensure balance state, and to remove the accumulated condensing water. If machine is need to install on a higher level (scaffolding or interlayer), it should make sure that the structure and size could withstand the machine.

3.2 Air Pipe and Material Pipe Connection

Picture 3-2: Schematic Drawing of Installation (Hermetic Design)



Picture 3-3: Schematic Drawing of Installation (Semi-integral Design)

3.3 Cooling Water Connection

Table 3-1: Cooling water connection table

Cooling water needs to be connected the before operation. The water port is at the back of the machine.

Picture 3-4: Cooling Water Connection

3.3.1 Cooling Water Connection

Connect through the cooling water before machine operation. For the efficiency, please follow below suggestions:

- For easy maintenance and safety, install the ball valve at cooling water inlet and outlet.
- Water pipe diameter should not less than the diameter of cooling water inlet and outlet.
- 3) For water quality, it needs to sediment or filter the water before it gets into the pipe, to prevent the deposits accumulated on pipeline of cooler and performance degradation.

Table 3-2: Cooling Water Specifications

	Cooling Water Specifications							
•	Temperature Difference between Water Inlet and Outlet Cooling Water Pre			ssure	Cooling Water Temperature			
	5℃		3~5kgf/cm ²		10	0~30℃		
		Suggested	cooling water	flow rate and	pipe diameter:			
	Flowrate of Interface specification			Flowrate of	Interface s	pecification		
Model	Cooling Water (L/min)	Inlet	Outlet	Model	Cooling Water (L/min)	Inlet	Outlet	
30H	4	Ø23	Ø23	700H	80	Ø25	Ø25	
40H	5	Ø23	Ø23	1000H	120	R ₂ 1.5"	R ₂ 1.5"	
50H	6	Ø23	Ø23	1500H	180	R ₂ 2"	R ₂ 2"	
120H	15	Ø23	Ø23	2000H	240	R ₂ 2"	R ₂ 2"	
200H	30	Ø23	Ø23	3000H	360	R ₂ 2"	R ₂ 2"	
400H	50	Ø23	Ø23	4000H	480	2X R ₂ 2"	2X R ₂ 2"	

3.3.2 Condensation Drainage Pipe

During normal operation, it will generate condensation water. Connect the water pipe at drainage outlet to remove the condensation water is necessary. As to ensure high machine efficiency, following suggestions must be observed:

- Drainage pipe inner diameter should not less than the diameter of drainage outlet.
- 2) Drainage pipe should be long enough to approach the drainage channel, and be the hose. Be careful not to press or bend the pipe for smooth water flow (Use the rigid pipe if there's need to press or bend the hose).
- 3) As condensation water drainage is in terms of gravity, make sure the drainage outlet is above the pipe. Otherwise the water can't be drained out and will flow back to the machine.

Note: The size of discharging port for all models is Rc1/2".

3.4 Power Connection

- Make sure the voltage and frequency of the power source comply with those indicated on the manufacturer nameplate that attached to the machine.
- 2) Power cable and earth connection should conform to your local regulations.

- 3) Use independent electrical wires and power switch. Diameter of electrical wire should not be less than those used in the control box.
- 4) The power cable connection terminals should be tightened securely.
- 5) The machine requires 3-phase 4-wire power source, connect the power lead (L1, L2, L3) to the live wires, and the earth (PE) to the ground.
- 6) Power supply requirements:

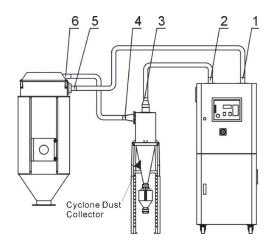
Main power voltage: +/- 5%

Main power frequency: +/- 2%

7) Please refer to electrical drawing of each model to get the detailed power supply specifications

3.5 Compressed Air Supply

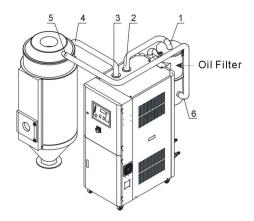
Table 3-3: Compressed Air Specification


Items	Value	Remark
		Solid particle content ≤ 5mg/m³, dew-point temperature ≤ -20°C, oil
Quality Grade	335	content ≤ 25mg/m³, oil content ≤ 25mg/m³.
		(Chinese standard: GB/T 13277-1991)
Air pressure (bar)	3~5bar	
Air quantity (L/hr)	~10L/hr	
Pipe dimension	PM20	Quick coupler(Chinese standard)

3.6 Option Installation

3.6.1 Installation Steps of Cyclone Dust Collector

- 1) Connect 1 and 5 with a heat-resistant duct and fixed both the ends with stainless steel tubes.
- 2) Connect 2 and 3 with a heat-resistant duct and fixed both the ends with stainless steel tubes.
- 3) Connect 4 and 6 with a heat-resistant duct and fixed both the ends with stainless steel tubes.



Picture 3-5: Installation Diagram of Cyclone Dust Collector

3.6.2 Installation Steps of Oil Filter

Oil Filter Installation Steps:

- 1) Screw the oil filter on the top plate of the honeycomb dehumidifier.
- Connect 1 and 2 with a heat-resistant duct and fixed both the ends with stainless steel tubes.
- 3) Connect 3 and 4 with a heat-resistant duct and fixed both the ends with stainless steel tubes.
- 4) Connect 5 and 6 with a heat-resistant duct and fixed both the ends with stainless steel tubes.

Picture 3-6: Installation Diagram of Oil Filter

3.6.3 Material storage bin (MST-80U-OP)

- 1) Check whether internal bin and connecting pipe are clean or not before using.
- 2) Optional with high-efficient HEPA to collocate with optional grade series.
- 3) If customer doesn't equip with HEPA, filter with accuracy of 5um is available, which is installed inside storage bin.

Picture 3-7: Material Stage Bin of Optical Grade MST-80U-OP

4. Application and Operation

4.1 Operation Procedure for HMI

- 1) Do not use keen-edged object instead of hands to operate the touch screen, and prevent violent collision of it.
- In a dry environment, static electricity may accumulate on the touch screen. Use a metal wire to discharge it before operating.
- 3) Use alcohol or eleoptene to wipe off the pollutants on the screen. Other solvent may cause the color of the screen to fade out.
- 4) Do not tear down any parts of the touch screen or take away any PCBs attached to it.

4.1.1 Description of touch screen

Picture 4-1: Description of Touch Screen

A: Display

B: Touch panel


4.1.2 Touch panel appear error

Table 4-1: Touch Panel Information

LED indicator light	State
Green (light)	Work well
Orange (light)	Backlight lamp burning
Orange (shine)	During software startup
Red (light)	Power status
No shine	Power break off

4.1.3 Screen operation flow Table

Picture 4-2: Screen Operation Flow Table

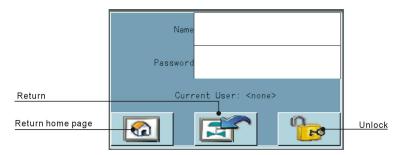
4.1.4 Menu Particular

4.1.4.1 System Default Screen

When the system is connected with power source, the initial default screen will display as shown below. By touching the button of "English" or "Chinese" to select either English or Chinese language in order to login "Drying Process" screen.

Picture 4-3: System Initial Screen

4.1.4.2 Dehumidifying Process


Picture 4-4: Dehumidifying Process Screen

4.1.4.3 Password Unlock

1) Input user name: shini2) Input password: 3588

3) Press "Unlock"

4) Press "Return", finish unlocking.

Picture 4-5: Password Input Screen

Note: Administrator password: 3333, Name: shiniwx,

Press

i

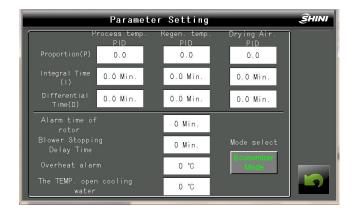
in dehumidifying control screen to enter drying monitor screen.

Picture 4-6: Drying Process

Press parameter setting button in dehumidifying process screen to enter parameter settings menu screen.

Picture 4-7: Parameter Setting Menu Screen

When using weekly-timer mode, press weekly-timer function button enter weekly-timer screen and set one-week timer function.



Picture 4-8: Time Setting Screen 33(53)

Press parameter settings button to enter parameter setting screen.

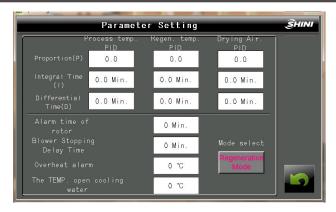
Picture 4-9: Parameter Setting

Rotor alarm time: Used to detect whether honeycomb rotor is rotating. Factory setting is 10min.

Blower stop delay time: When turning off the machine, blower's stop will be delayed to cool down the heat inside heater box to prevent the temperature inside the box keeps rising after machine's turning off. Factory setting is 3min.

Overheat alarm: Used for protection by preventing the system temperature rise beyond the temperature range. Factory setting is 15° C.

Cooling water temperature setting: Cooling water is used when the temperature is above the set temperature. Factory setting is 60°C.


4.1.4.4 Working Modes of Regeneration Heater (Dehumidifying Function)

A. Regeneration Mode

Setting Steps:

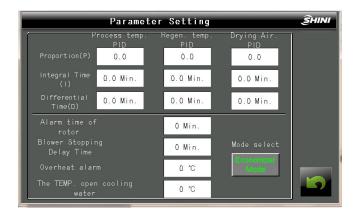
1. Enter parameter setting screen, press mode button, choose regeneration mode.

Picture 4-10: Parameter Setting Screen

2. Enter drying control screen, set material drying temperature and air volume.

Picture 4-11: Drying Process Screen

3. Set regeneration temperature (180°C)


Picture 4-12: Dehumidify Process Screen

4. Press button, machine will start-up.

Note: In this mode, regeneration temperature and drying air volume of the machine are constant. Machine will operate under a setting drying temperature, air volume and regeneration temperature.

- B. Energy saving mode
- 1.Enter parameter setting screen, press, choose energy saving mode.

Picture 4-13: Parameter Setting Screen

2. Enter drying control screen, set material drying temperature and air volume.

Picture 4-14: Drying Process Screen

3. Set dew-point temperature

Picture 4-15: Dehumidify Process Screen

4.Press button, machine will start up.

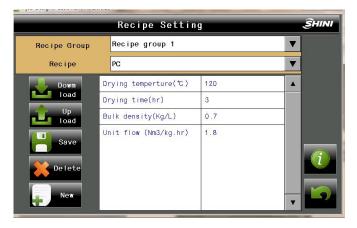
Note: In this mode, regeneration temperature (dehumidifying temperature) will be adjusted according to the change of dew-point temperature to saving energy.

4.1.4.5 Working Modes of Material Drying

A. Normal Drying Mode

Picture 4-16: Drying Process Screen

Note: In this mode, only drying temperature and air volume need to be set. Machine will dry the material under a set temperature and air volume.



- B. Activate Recipe-Drying Mode
- 1. Press OFF button,

Picture 4-17: Drying Process Screen

2. Set Parameter of The Recipe

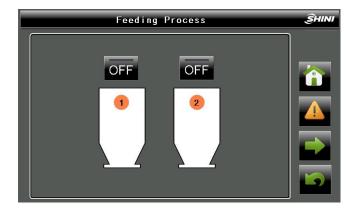
Picture 4-18: Recipe Setting Screen

3. Drying Process screen

Picture 4-19: Drying Process Screen

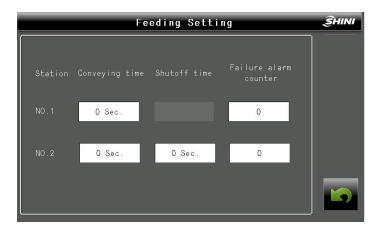
Note: In this mode, drying air volume will change according to the throughput set in the recipe.

- C. Using return-air's temperature control mode
- 1. Press on to make it run.


Picture 4-20: Drying Process Screen

Set drying temperature and return-air temperature of the material as picture above.

Note: In this mode, drying air volume will adjust according to return-air's temperature to achieve energy saved controlling.



4.1.4.1 Conveying Monitoring

Picture 4-21: Conveying Monitoring Screen

1. Monitoring screen for vacuum hopper receiver and photosensor hopper receiver control: control the start/stop of the operation and monitor the hopper state.

Picture 4-22: Conveying Setting Screen

2. hopper parameter adjustment, No.1 is vacuum hopper, No.2 is photosensor hopper receiver

4.1.4.2 Alarms Fault Records

Touch "Alarm Fault Records "button on the right of "Drying Process" screen or "Conveying Process" screen to enter into Alarm Fault Records screen. The screen is shown as below:

Picture 4-23: Alarm Fault Records

- 1. When alarm fault records cover more than displaying space, touch "Up" or "Down" keys to read more records.
- 2. According to the alarm information, the operator could get the troubleshooting information from the instruction book.
- 3. Press "EXIT" button to exit from this screen.

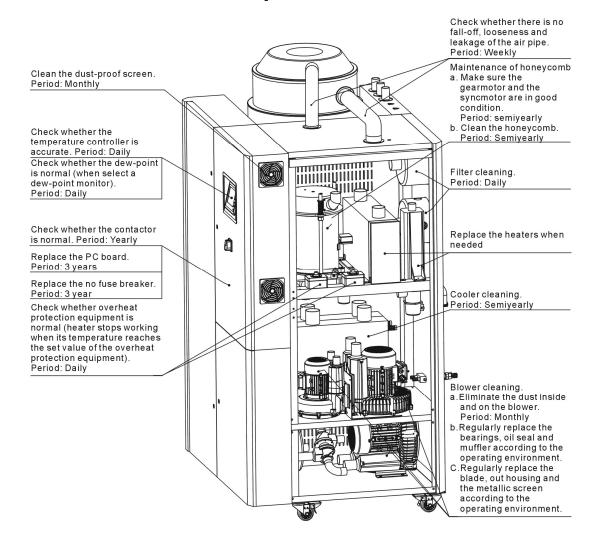
Table 4-2: Alarm Information List

Alert message	Range	Results	Possible causes	
Auti-phase	SCD,SDD SD-H	System cannot operate, and the visible alarm is flickering.	Low voltage, auti-phase	
Process blower overload.	SCD,SDD SD-H	Dehumidifier does not work and the visible alarm is flickering.	Incorrect motor overload setting, or motor burns of	
Regenerating blower overload.	SCD,SDD SD-H	Dehumidifier does not work and red alert light is flickering.	Incorrect motor overload setting, or motor burns or	
Conveying blower overload.	SCD	Material conveying stops and the visible alarm is flickering.	Incorrect motor overload setting, or motor burns out.	
No.1 receiver suction problem	SCD	No.1 receiver stop suction function and the visible alarm is flickering.	Storage tank lacks material, suction probe probler parameter wrongly setting, shut-off valve damaged	
No.2 receiver suction problem	SCD	No.2 receiver stop suction function and the visible alarm is flickering.	Drying hopper lacks material, suction box problem, parameter wrongly set, shut-off valve damaged.	
No.3 receiver suction problem	SCD	No.3 receiver stop suction function and the visible alarm is flickering.	Drying hopper lacks material, suction box problem, parameter wrongly set, shut-off valve damaged	
Process temperature overheat	SDD,SCD	Dehumidifier does not work and the visible alarm is flickering.	Temperature control parameter wrongly setup, touching pad is malfunction, process heating problem.	
Regenerating temp.overheat	SCD,SDD SD-H	Alarm display on screen	Temperature control parameter set envi Contactor fail Thermocouple fail	
Temp. overheat	SCD,SDD SD-H	Message display screen	No water supply or high water temperature.	
Process temp. Thermople broken	SDD,SCD	Dehumidifier does not work and the visible alarm is flickering.	Thermocouple disconnected or bad contact.	
Regenerating temp. Thermocouple broken	SCD,SDD SD-H	Dehumidifier does not work and the visible alarm is flickering.	Thermocouple disconnected or bad contact.	
Rotor is not working	SCD,SDD SD-H	Dehumidifier stop and the visible alarm is flickering.	Rotor driving motor burnt, belt broken, micro switch fail, or incorrect rotor speed monitoring parameter setting.	
PLC is not under operation mode	SCD,SDD SD-H	System stops.	PLC work mode is not in RUN mode.	

Note: 1) Overload Relay reset: Open control box, press "RESET" button on the corresponding overload relay.

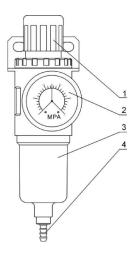
²⁾ Rotor Failure Alarm reset: Turn off the Drying Switch and then turn it "ON" again.

³⁾ Over Temperature Alarm reset: Turn off the Drying Switch and then turn it "ON" again after the temperature drops down.



5. Trouble-shooting

Symptom	Possible causes	Actions taken			
	Return air temperature too high	1. Check cooling water temperature (below 40℃)			
	Abnormal setting of regenerating temperature	2. Set the regenerating temperature again(Default value H5 is 180℃, H4 is 150℃)			
	3. Rotation wheel blocked	3. Clean or wash rotor			
Alama liaht	4. Filter is blocked	4. Clean or replacement			
Alarm light for high dew	5. Leakage of heat-resistant hose	5. Check pipe and connector			
point	6. Operating time is less than 30 minutes	6. Wait until 30 minutes later for confirmation			
	7. Rotation wheel is not working	7. Check motor, micro switch, belt is damage or not			
	8. Motor's direction is wrong	8. Check motor's direction			
	System drying capacity insufficient	9. Replace with a large system			
	10. Honey-comb upper/lower lid is leaking	10. service or change the seal components			
	Main AC power supply unconnected	1. Close main AC power supply			
System cannot	2. Put timer switch into ON status	2. Reset timer button and restart again			
operate	3. Motor overload or Phase reverse	Check close-loop, regenerative motor and AC power source are connected correctly			
Lack material for a long time	Main AC power source unconnected or conveying is not in ON position	1. Turn on main AC power source			
but suction	2. Photo sensor, micro switch are bad contact	2. Adjust or replace			
blower don't work	3. Signal cable is broken	3. Re-connect or replace			
	1. Heat relay off load	Check reason and reset			
Motor does	2. Connector is not working	2. Check it is burnt out or not			
not run	Power source lack of phase or motor is burnt out	3. Check and replace			
Matarial is	1. Photo sensor or micro switch is On status	1. Adjust or replace			
Material is full but	2. Signal's cable is broken	2. Check signal cable			
suction blower	3. Mechanical problem or contactor fail	3. Repair or Replace			
still working	4. PLC problem	4. Check and replace			
	1. Material is empty	1. To add more materials			
Continuous running but cannot fill up hopper receiver	2. Pipe leakage	2. Repair or replace			
	3. Filter is blocked	3. Clean			
	Diaphragm valve or shutoff valve is closed	Check diaphragm valve or shutoff valve's pressure, electric valve may be burnt out, circuit is well connected or not			
	5. Blower blade problem	5. Check and repair			


6. Maintenance and Repair

6.1 Filter & Pressure Regulating Valve

6.1.1 Filter & Pressure Regulating Valve Drawing

Picture 6-1: Filter & Pressure Regulating Valve Drawing

Table 6-1: Filter & Pressure Regulating Valve Assembly

No.	Component	Function		
1	Pressure adjusting knob	Used for adjusting the air pressure at the outlet		
2	Pressure gauge	Used for displaying air pressure at the outlet		
3	Cup	Used for storage the moisture filtered from the air		
4	Water outlet	Used for discharging the moisture in the glass		

6.1.2 Filter & Pressure Regulating Valve Operation steps

- 1) Switch on the air source.
- 2) Pull the black pressure adjusting knob 1 upward and rotate it, observe the pressure gauge 2, generally a 0.5 Mpa pressure is advisable.
- 3) Push back the black knob 1.

6.2 Air Filters

Please periodically clean the dust on the air filters, once per week.

Cleaning steps:

- 1) Take out the air filter carefully.
- 2) Blow off the dust on the air filter screen and the cover with pressure air.
- 3) Wipe off the barrel wall of air filter with cloth.
- 4) After cleaning, place all parts in reversed order carefully.

5) Please ensue that the filter is well seal with metal frame.

Picture 6-2: Filter Clearning

Note!

Don't let foreign object enter into the barrel, when taking out the air filter.

6.3 Blower Motors

6.3.1 Drying Blower

- 1) Fix inlet/outlet flange of blower, and tighten four screws securely.
- 2) Connect the blower with electrical source.
- 3) Install the blower on the Machine frame.

Picture 6-3: Installation of Blowers

6.3.2 Regeneration Blower

- 1) Fix inlet/outlet flange of blower, and tighten 4 screws securely.
- 2) Install the blower on the machine frame.
- 3) Connect the blower with electrical source.

6.3.3 Conveying Blower

- 1) Fix inlet/outlet flange of blower, and tighten 4 screws securely.
- 2) Connect the blower with electrical power source.
- 3) Install the blower on the machine frame.

- 4) Fix the three-way valve (See Figure. 1).
- 5) Install the solenoid valve, and then tighten 2 screws on the machine frame (See Figure. 2).

Picture 6-4: Conveying Blower

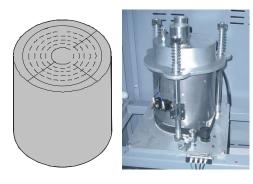
6.3.4 Blower Cleaning

- To clean blower both internal and external parts (especially the fan cooling path), by removing surface dust. If more dusts are accumulated, it will cause deficiency for ventilation, temperature rising up, blower power reduced, vibration increased and so it will cause machine broke down.
- 2) Ball bearing, oil seal and sound-proof are belonging to consumable parts and so it has a life period and requires regular replacement.

Picture 6-5: Blower

6.4 The Service Life of the Key Parts of the Product

Table 6-2: The Service Life of the Key Parts of the Product


No.	Name of the Parts	Useful Life	
1	Blower	Above 5 years	
2	Process heater	Above 1 year	
3	Regen. herter	Above 1 year	
4	Contactor	Above 2000,000 act	
5	Honeycomb 5 years		
6	Filter 1 year		

6.5 Honeycomb-rotor

6.5.1 What is Honeycomb-rotor

The main body of the honeycomb-rotor is a honeycomb, made by ceramic fibre and organic additives, sintered under high temperature with molecular sieve and silica gel, to be strongly bonded together and form a solid and hard surface. Not like common molecular sieve, which will produce dusts and fines to pollute raw materials when aging or become saturated requiring regular replacement, the moisture of return air is quickly absorbed by numerous tunnels before coming out of the rotor to form low dew-point air. At the same time, regenerating blower takes dry air into the honeycomb-rotor from an opposite direction to regenerate the rotor.

Picture 6-6: Honeycomb Rotor

6.5.2 Installation Steps of the Rotor

- The upper and lower lid of honey-comb should install Teflon gasket (Fig. 1).
- 2) Use 4 screws to fix the rotor base on the machine frame firmly, and then install the shaft accordingly (Fig. 2).
- 3) Install the gearmotor and transmission gear (Fig. 4).
- 4) Install and fix the main support screws (Fig. 3).
- 5) Fit the transmission belt in proper position (Fig. 6).
- 6) Install the honeycomb-rotor (Fig. 9) and transmission belt (Fig. 12).
- 7) Fix the rotor top cover (Fig. 8).
- 8) Fit all springs and tighten the screws (Fig. 7).
- 9) Install both the transmission belt (Fig. 13) and belt tension regulator (Fig. 14).

10) Install micro-switch and fixed board firmly (Fig. 10).

Picture 6-7: Rotor Installation Diagram

Honeycomb Rotor Cleaning Steps:

Use a vacuum-cleaner with brush to suck up the dust on rotor surface.

Blow off the dust in the rotor channels with compressed air.

If there is dirt sticking to the channel walls inside the rotor, cleaning steps as follows:

- Saturate the rotor by blowing humid air (higher than 60%RH) through the rotor without having regeneration circuit on. This can be done by just turning the regeneration heater off and still have the process blower running if process air has high humidity. If the process air is too dry try to put a humidifier in the air stream. Do this for one hour.
- 2) Depending on the character of the dirt, sink the rotor into water with cleaning agent in it (PH value 3~2 liquid is applied to silica gel, PH value 7~10 applied to molecular valve). Greasy dirt should be put into a detergent solution with xylene. 15 minutes cleaning is suggested.
- 3) Take the rotor out of the liquid and let it rest with the channels vertically for 5 minutes so the liquid can run out.
- 4) Blow off the residual liquid in the channels with compressed air.

5) Put the rotor back into the dehumidifier and run the unit with regeneration circuit (the regeneration temperature between 50°C and 60°C) on for at least one hour.

Note: In the dry air and wet air outlets, there will be high concentrations liquid out for some time. If a solvent has been used, there will be a residual smell for several days.

Note: For some dirt which is greasy and sticky in the rotor, 100% elimination is impossible. The only one thing you can do is to replace the rotor for the cleaned rotor performance can only be recovered partly.

6.6 EGO

Table 6-3: EGO Default Value

No.	Category	Default Value
1	Drying	200℃
2	Regenerating	200℃

Picture 6-8: EGO

Note: EGO is mainly used for protecting highest heating temperature, other than drying temperature. EGO has been set before delivery, unauthorized modification is not permitted!

6.7 Cooler

- 1) Clean the cooler and eliminate the leakage regularly.
- Please do the above-mentioned job once a month for cooling by chilled water.
- 3) As for the cooling by normal water, do the same job once a quarter.

Cooler Cleaning Step

- 1) Disassemble the cooler's pipe and screw, and remove the cooler out of the chiller.
- Release the fixed screw on the upper and lower cover of cooler and disassemble the cover.
- 3) Use brushes, compressed air or low pressure water to clean the dust and sundries on the cooler fan and copper pipe.
- 4) Make the cooler's upper and lower cover junction clean enough and smear the silica gel then fixed the covers with screws.
- 5) Put the cooler on the air at least four hours to make the silica gel drying enough then fix the cooler on the chiller and connect all pipes.

6.8 Maintenance Schedule

6.8.1 General Machine Information

Model	_ SN		Manufactu	ıre date _		_
VoltageΦ	V Fre	quency	Hz	Power _		kW
6.8.2 Installation & Insp	ection					
Check if the air pipe	are tightly	connected.				
Check if the materia	al clearance	e door tightly	closed.			
Check if the air pipe	s are corre	ectly connec	ted.			
Check if there are o	amages of	the honeycl	e.			
Inspection of Electri	c Compor	nents				
□Voltage	V	Hz				
☐Fuse melt current:	1 Phase _	A	3 Phases	i	_ A	
Check phase seque	ence of the	power supp	ly.			
Check the rotating	direction of	regeneratio	n blower.			
Check the rotating	direction of	conveying b	olower.			
Check Air Supply of	Compres	ssor				
Compressed air pre	ssure	bar				
Air flow	L/nun					
Check if the compre	essed air pu	urified or not	:			
6.8.3 Daily Checking						
Check the switch of	the machin	ne.				
Check auto start-up	of the mad	chine.				
Check the tempera	ure control	ler.				
Clean the filter.						
Check whether ove	rheat prote	ction is norn	nal.			
Check whether dew	-point is no	ormal.				
6.8.4 Weekly Checking						

Check all the electric wires.
Check loose electric connections.
Check and clean compressed air filter and regulator.
Check magnetic valve.
Check motor overload relay and phase-reversed prevention function.
Check whether air pipe is shed, leaked and loose.
6.8.5 Monthly Checking
Check if the belt is loose or not.
Check gear box working conditions.
Check if there are leakages in the honeycomb.
6.8.6 Half-yearly Checking
Check if hot air pipe is broken or not.
Check dehumidifier heater.
Check regulation blower/material conveying blower/fans.
Check whether honey-comb rotor belt is damaged.
Clean the cooler.
6.8.7 Yearly Checking
Check whether the contactor is normal ¹ .
6.8.8 3 year Checking
PC board renewal.
□No fuse breaker renewal.

Note: 1. Manufacturer laboratory data for AC contactor is two million times in life. we suggest service life for one million four hundred thousand times, if work eight hours per day, recommended replacing frequency is 1.5 years, if work day and night, replacement is suggested to be done every six months.