TC300SK

Hot Runner Temperature Controller Communications Function Manual

Date: Jan. 2021

Version: Ver.A (English)

Contents

1. Safety Regulations and Attentions		
2. Gener	ral Description	6
3. Descr	iption of MODBUS Features	7
3.1	Master-Slave Structure	7
3.2	Transmission Protocol	7
3.3	Description of Communication Format and Data Command	
4. TC300	OSK Communication Table	14

1. Safety Regulations and Attentions

In order to use the TC300SK Hot Runner Temperature Controller safely and effectively, please read through this operation manual before operation, and abide by warning marks in the content and operation instructions.

Precautions prior to operation:

- 1. Install the machine on a firm floor in a well ventilated location; avoid a damp, dusty or high-temperature environment since installation in such environments is likely to cause failure or malfunction of the machine or even a fire.
- 2. Before connecting a power supply to the TC300SK, make sure the phase, voltage and capacity of the power supply are correct. Use of any power supply other than that specified will cause severe damage to the system. If there is no response from machine after switching on the power supply, switch off the power mains immediately and check the wiring for correct connection.
- 3. Before switching on the power mains of the TC300SK, make sure the system grounding (FG) is correctly connected. Incorrect grounding may result in electrical shock or damage to equipment.
- Before connecting the die cable to the TC300SK, make sure the connection method of the two are consistent. Connecting the die cable with inconsistent connector to the TC300SK will result in electrical shock and equipment damage.
- 5. Check operation of the TC300SK's heat cooling fan from time to time. In case the heat dissipation fan is clogged, immediately clean the fan to ensure air flow or heat dissipation will be unhindered.
- 6. The control system shall never be altered or modified by non-professional personnel, or else electrocution, injury, equipment damage, or even a fire may occur.
- 7. In the event of abnormal smoke, splashing, odor or noise from the TC300SK during operation, switch off the power mains immediately and notify a specialist for check up. Do not switch on the power before the problem is solved.

8. The TC300SK shall be serviced by professionals only. Before service work, make sure the power mains are switched off. Dismantling the TC5A when it the power is on is likely to cause electrical hazards.

2. General Description

Ø		D
Ľ		1

Read this manual carefully before operation to prevent damage of the machine or personal injuries.

Temperature controller, being used in hot runner system, is a device which maintains the required temperature value for the hot runner via. PID control. It consists of temperature control card, circuit breaker, cabinet, fan, terminal blocks and cables. The temperature control card in the cabinet controls the temperature of the hot runner and the temperature accuracy of system. Self-protection and fault tolerance depends on the function of the temperature control card. At present, temperature controller is necesscry in the application of hot runner molds.

3. Description of MODBUS Features

3.1 Master-Slave Structure

- The Modbus is configured in a Master-Slave Structure in which, a point-to-point communication method is implemented. After delivering a message, the Master end will wait for the corresponding message reply from the Slave end; Likewise, the Slave end must respond to the corresponding message that is received from the Master end.
- 2. Communication Method:
 - 1) The Query: The "function code" contained in the query message notifies the Slave of the action that will be executed. The information in the "Data" refers to the content that must be filled for the Slave to acknowledge. Take "function code 03" for example, it is the address data that is responded to by the Slave for reading by the Master; the "Data" is the address and the message count that must be filled in the Master Field for reading; and the "error check" is the tool used by the Slave to check the correctness of the message.
 - 2) The Response: Under normal status, the "function code" in the message responded to by the Slave will be identical with the "function code" in the Query at the Master end. The information in the "Data" comes from the Slave end or the status in the Register. When detecting the error, the "function code" at the Slave end will be modified (max. bit to be set as "1") in order to identify that the message is incorrect. The information in the "Data" can be used for storing the error code; whereas, the "error check" is provided for the Master to check the correctness of the message.

3.2 Transmission Protocol

In RS-485/RS-422/RS-232 applications, the Modbus is configured with two transmission protocols, namely ASCII and RTU for the user to select according to actual needs. Nonetheless, the serial communication parameters (e.g. baud rate, parity mode...etc.) of all equipment connected to the same line must be the same, and the selected Modbus communication protocol (ASCII/RTU) shall be identical as well.

1. ASCII Mode: After selecting Modbus ASCII (American Standard Code for

Information Interchange), each count of 8-bit data in the communication packet will occupy two ASCII bits. The advantage of this kind of communication mode is to avoid errors occurring when judging the data (bit) if the packet data is delayed (even up to 1 second) during the transmission process.

 Definition of Coding: Each count of 8-bit data consists of two ASCII bits. For example, one count of 1 byte data 64H (16-decimal method) is expressed as ASCII "64", including ASCII code (36H) of "6" and ASCII code (34H) of "4".

Bit Symbol	0	1	2	3	4	5	6	7
ASCII Code	30H	31H	32H	33H	34H	35H	36H	37H
Bit Symbol	8	9	А	В	С	D	Е	F
ASCII Code	38H	39H	41H	42H	43H	44H	45H	46H

Listed below are the ASCII codes from 0 to 9 and from A to F.

2) Communication Data Structure: In ASCII Communication Mode, each packet includes the initial bit, communication address, command code, data content, error code and end code, etc.

STX	Initial Bit: ":"(3AH) One ASCII code.		
ADR	Communication Address: Each byte includes two ASCIIcodes		
CMD	Command Code: Each byte includes two ASCII codes		
DATA(n-1)	Data Content: N word = 2N byte includes 4N count of ASCII codes		
DATA(0)			
LRC	Debug Code: Each byte includes two ASCII codes		
End 1	End Code: CR (0DH) One ASCII code		
End 2 End Code: LF (0AH) One ASCII code			

3) Description of Communication Data Format:

STX	Communication Start: ASCII mode is,, : "(3AH)		
ADR	Communication Address: The scope of a legal communication address is		
	between 1~255.		
	Example: Communication with the ID (communication address) expressed by		
	16" (16-decimal 10H): ASCII Mode: ADR = "1"0"=> 31H,30H.		
CMD	Command Code (03H is data reading; 06H is single data writing; 10H is multiple		
	data		
DATA	Data Content and length will depend on the respective data.		
LRC	Debug code: ASCII Mode uses LRC (Longitudinal Redundancy Check)		
End 1			
End 2	Communication ending bit		

 Parameter Write-In: Write in data command code – 06H (write in one WORD).

Example: Write 100 (0064 H) to the register 40001 of the instrument address ID=01H, the first register (instrument register address 0) in zone 4, that is, the instrument setting value is 100.

Command Message		Response Message		
STX	: (3AH)	STX : (3AH)		
455	30		30	
ADR	31	ADR	31	
0115	30	0.15	30	
CMD	36	CMD	36	
	30		30	
	30		30	
Data Address	30	Data Address	30	
	30		30	
	30		30	
	30		30	
Data Content	36	Data Content	36	
	34		34	
	39		39	
LRC Check	35	LRC Check	35	
End 1	CR(0DH)	End 1	CR(0DH)	
End 2	LF(0AH)	End 2	LF(0AH)	

5) Parameter Read-Out: Read out the data command code – 03H (read out one WORD).

Example: Read out the register 40001 of instrument address ID=01H, and the first register (instrument register address 0) in Zone 4. Assume that the register address 40001 is 100 (64H), that is, read out current set temperature of the instrument.

Command Message		Response Message		
STX	: (3AH)	STX	: (3AH)	
	30		30	
ADR	31	ADR	31	
CMD	30	CMD	30	
CMD	33	CMD	33	
	30		30	
Deverseter Address	30	DATE SIZE	32	
Parameter Address	30		30	
	30	Deremeter Makie	30	
	30	Parameter value	36	
	30		34	
Parameter Quantity	30		39	
	31	LRC Check	36	
	46	End 1	CR(0DH)	
LRC Check	42	End 2	LF(0AH)	
End 1	CR(0DH)			
End 2	LF(0AH)			

 \star If the received command message is wrong, then only the data transmission error code will be responded to.

STX	: (3AH)
	30
ADR	31
	38
СМД	33
	30
Data Transmission Error Code	31
	37
	42
End 1	CR(0DH)
End 2	LF(0AH)

- 2. RTU Mode: After selecting the Modbus RTU (Remote Terminal Unit) Mode, each count of 8-bit data will include two 4-bit 16-decimal system codes. The advantage of selecting this mode is to accommodate higher data quantities than ASCII, but the data transmission in each packet must be continuous without interruption.
 - 1) Communication Data Structure: In the RTU Communication Mode, each packet will include communication address, command code, data content and debug code.

T1-T2-T3-T4	Before sending the packet must be retained for over 3.5-bit of transmission time with the previous packet.			
ADR	Communication Address: 1 byte			
CMD	Command Code: 1 byte			
DATA(n-1)	Data Content: N word = 2N byte includes 4N count of ASCII.			
DATA(0)				
CRC	Debug Code: 2 byte			
T1-T2-T3-T4	Before sending the next packet, it must be retained for over 3.5-bit of transmission time with the previous packet.			

2) Description of communication data format:

	Correspondence address: the legal correspondence address ranges from 1 to				
	99. For example, the thermometer ID (correspondence address) is "16" (16 carry				
ADR	10H):				
	ASCII Mode: ADR ='1''0'=> 31H, 30H				
CMD	Command Code, (03H is data reading; 06H is single data writing)				
DATA	Data Content and length will depend on the respective data.				
CRC	Debug code: RTU Mode uses CRC (Cyclical Redundancy Check)				

 Parameter Write-In: Data write-in command code-06H (write in 1 count of WORD).

Example: Write 100 (0064H) to the register 40001 of the instrument address ID=01H, the first register (instrument register address 0) in zone 4, that is, the instrument setting value is 100.

Command Message		Response Message		
ADR	01	ADR	01	
CMD	06	CMD	06	
	00	Data Address	00	
Data Address	00		00	
	00		00	
Data Content	64	Data Content	64	
	88		88	
CRC Check	21	CRC Check	21	

 Parameter Read-Out: Read out data command code – 03H (read out one WORD).

Example: Read out the register 40001 of the instrument communication ID=01H, and the first register value (instrument register address 0) in zone 4. Assume that the parameter address 40001 value is 100 (64H), that is, read the current set value of the instrument is 100.

Command Message		Response Message	
ADR 01		ADR	01
CMD	03	CMD	03
	00	DATE SIZE	02
Parameter Address	00		00
	00	Parameter	64
Parameter Quantity	01		B9
	84	CKC Check	AF
CRC Check	0A		

* If the command message received by the temperature gauge is wrong, then only the data transmission error code will be responded to.

ADR	01
CMD	83
Data Transmission Error Code	01
	80
CRC Check	F0

3.3 Description of Communication Format and Data Command

- 1. Communication Protocol: ASCII Mode/RTU Mode
- 2. Speed: 9600 bps/19200 bps/38400 bps/57600 bps/115200 bps
- 3. Initial bit: 1 bit
- 4. Data Length: 8 bit
- 5. End bit: 1 bit
- 6. Parity check: None (without parity check)

4. TC300SK Communication Table

	Name	Bit	Addres s	save	Name Notation	Prese t	Scope	Unit	Notation	Note
	SV		0	Y	Set Value	150	LOS~HIS	°C/°F	Set Value	
									Manual	
	MOP		1	Y	Manual Output Percent	0	0~100 %	%	Output	
									Percent	
	Sthup		2	v	Standby Temperature	100	0 300 °C/°E	°C/°F	Standby	
	Siby-p		2	1		100	0~300 C/1	0/1	Temp.	
	Stby-t		3	Y	Standby Timer	0	0~300 min	m	Standby Time	
	ALR		4	Y	Alarm Range	30	3~99℃/ °F	°C/°F	Alarm Range	
	105		5	Y	Set Value Low Limit	50	0~HIS	°C/°F	Set Value Low	
	200		•		Range		0~113	0, -	Limit Range	
					Set Value High Limit		LOS~500 ℃		Set Value	
Write in	HIS		6	Y	Range	500	LOS~999 °F	°C/°F	Upper Limit	
(load the									Range	
preset	PLIT		7	Y	Output Limit	100	10~100%	%	Output Limit	
value) in	OPV		8	Y	PV Offset	0	±99 ℃/℉	°C/°F	PV Offset	
the	SOFT		9	Y	Soft Start Time	1	0~10 min	m	Soft Start	
storage									Time	
area)			10		Reserve				Reserve	
					Reserve				Reserve	
			11							
					Reserve				Reserve	
			12							
			13		Reserve				Reserve	
		Bit0								
		0=0					0=OFF		Insulated	
	STB	FF	14	Y	Standby Switch	1	1=ON		function	
		1=O							switch	
		Ν								

		Bit2							
SENS	0=J		V	Thermocouple Type		0=J	The sum of second s		
	1=K		Y		U	1=K	Thermocouple		
		Bit3							
	0.5	0=C		V	T		0= ℃	T aura 111	
C-F	С-F	1=F	Y	Temperature Unit	0	1= °F	l emp. unit		

	Name	Bit	Address	save	Name Notation	Preset	Scope	Unit	Notation	Note	
	OUT	Bit4 0=ZRC 1=PHA		Y	Trigger Mode	0	0=Zero Cross 1=Phase Angle		Output trigger mode		
Write in	СТМ	Bit5 0=AUTO 1=MAN		Y	Control Mode	0	0=Auto 1=Manual		Control mode		
(load the preset value)	CDS	Bit6 0=OFF 1=ON		Y	Current Detect Switch	1	0=OFF 1=ON		Current detecting switch		
area)			15		Reserve	Γ			I		
arcay			16		Reserve						
			17		Reserve						
-			18		Reserve						
			19		Reserve						
			20		Reserve						
			21		Reserve						
			22		Reserve						
			23		Reserve						
			24		Reserve						
			25		Reserve	I			I		
			26		Reserve						
Write in storage	Sys. Para.		27	Y	System parameter				System parameter		
area	Sys.				System				System		
No need to load	Para		28	Y	parameter				parameter		
the default	Sys.				System				System		
value	Para		29	Y	parameter				parameter		

(HMI comm.	Sys.			System	System	
read only)	Para	30	Y	parameter	parameter	
	Sys.			System	System	
	Para	31	Y	parameter	parameter	
	Sys.			System	System	
	Para	32	Y	parameter	parameter	
	Sys.			System	System	
	Para	33	Y	parameter	parameter	

Name	Bit	Addres s	save	Name Notation	Prese t	Scope	Unit	Notation	Note
BUAD		34	Y	Commuication ID Commuication buad rate	2	1~255 0=9600 1=19200 2=38400 3=57600		Comm. ID Comm. speed	
NODE	Bit0 0=AS C 1=RT U	36	Y	Commuication Mode	0	4=115200 0=Modbus ASCII 1=Modbus RTU		Comm. mode	
		37	Y	Reserve					
COLD		38	Y			0:Real-timeambient temp.1: Initial power onambient temp.		Cold end mode	
COUA		39	Y		0-50			Cold end temp.	
TCST		40	Y			3-20 min		Short circuit alarm time	
TCBF		41	Y			1-4 threshold Increased accordingly		The judgement of temp. sensor line resistance	
		42	Y					Reserve	
		43	Y			30-99 ℃/°F		Temp. alarm lower limit	
		44	Y					Reserve	
		45 45	Y					Reserve	

			46	Y				Reserve
			47	Y			0:shut down 1: start up	on/off
	ATS	Bit0 0=OF F 1=ON	48	N	AT Switch	0	0=OFF 1=ON	AT start switch
	STS	Bit1 0=OF F 1=ON			Standby Start	0	0=OFF 1=ON	Insulated start switch
Write to not stored area	BELL	Bit2 0=OF F 1=ON			Buzzer Switch	1	0=OFF 1=ON	Buzzer switch
	rSET	Bit3 0=OF F 1=ON			Initialize	0	0=OFF 1=ON	Module load reset value
	SSA	Bit4 0=inac tive 1=act ive			Soft start active	1	0=inactive 1=active	Slow start switch
	BTS	Bit5 0=OF F 1=ON			Boost Start	0	0=OFF 1=ON	Rise start switch
			49 50 51	N N				Reserve Reserve

Name	Bit	Addre ss	Save	Name Notation	Preset	Scope	Unit	Notation	Note
PV		52		Present Value			°C/'F	Temp. display value	
нтс		53		Heater Current			А	Current display value	

Read only area	OPP		54	Heater Out put Percentage		%	Output proportio n (SV switch display)	
	ATP		55	Ambient Temperature		°C/°F	Room Temp.	
	EDT		56	Edition			Program Version	
	FRQ		57	AC Power Frequency		н	Power Frequenc y	
	ERC	Bit0= TCO Bit1=TCR Bit2=TCS Bit3=HTS Bit4=LPB Bit5=TRS Bit6=F1brk Bit7=F2br k	58	Error Code	Bit0: temp. sensor line breaks Bit1:temp. sensor line reversed Bit2:temp. sensor line short circuit Bit3:heater short circuit Bit4:open circuit loop open circuit Bit5:Triac short circuit Bit6:Fuse1 slight open Bit7:Fuse2 slight open		Exception Code	Abnormal display
	ALC	Bit0=HI Bit1=LO	59	Alarm Code	Bit0: upper limit alarm Bit1:lower limit alarm		Alarm Message	Alarm display
	Reserve		60					
			61				Reserve	
			62				Reserve	
			63				Reserve	

PS: The read area is for the system developer only and it is not provided for parties other than the system developer.